18 research outputs found

    The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain

    Get PDF
    Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 ÎŒmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-ÎČ1-42 (AÎČ). Extra and intracellular oligomeric deposits of AÎČ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders

    Early and Late Pathomechanisms in Alzheimer’s Disease: From Zinc to Amyloid-ÎČ Neurotoxicity

    Get PDF

    Effects of Marginal Zn Excess and Thiamine Deficiency on Microglial N9 Cell Metabolism and Their Interactions with Septal SN56 Cholinergic Cells

    No full text
    Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency–Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency–Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess

    Protection of Cholinergic Neurons against Zinc Toxicity by Glial Cells in Thiamine-Deficient Media

    No full text
    Brain pathologies evoked by thiamine deficiency can be aggravated by mild zinc excess. Cholinergic neurons are the most susceptible to such cytotoxic signals. Sub-toxic zinc excess aggravates the injury of neuronal SN56 cholinergic cells under mild thiamine deficiency. The excessive cell loss is caused by Zn interference with acetyl-CoA metabolism. The aim of this work was to investigate whether and how astroglial C6 cells alleviated the neurotoxicity of Zn to cultured SN56 cells in thiamine-deficient media. Low Zn concentrations did not affect astroglial C6 and primary glial cell viability in thiamine-deficient conditions. Additionally, parameters of energy metabolism were not significantly changed. Amprolium (a competitive inhibitor of thiamine uptake) augmented thiamine pyrophosphate deficits in cells, while co-treatment with Zn enhanced the toxic effect on acetyl-CoA metabolism. SN56 cholinergic neuronal cells were more susceptible to these combined insults than C6 and primary glial cells, which affected pyruvate dehydrogenase activity and the acetyl-CoA level. A co-culture of SN56 neurons with astroglial cells in thiamine-deficient medium eliminated Zn-evoked neuronal loss. These data indicate that astroglial cells protect neurons against Zn and thiamine deficiency neurotoxicity by preserving the acetyl-CoA level

    Properties of New Composite Materials Based on Hydroxyapatite Ceramic and Cross-Linked Gelatin for Biomedical Applications

    No full text
    The main aim of the research was to develop a new biocompatible and injectable composite with the potential for application as a bone-to-implant bonding material or as a bone substitute. A composite based on hydroxyapatite, gelatin, and two various types of commercially available transglutaminase (TgBDF/TgSNF), as a cross-linking agent, was proposed. To evaluate the impacts of composite content and processing parameters on various properties of the material, the following research was performed: the morphology was examined by SEM microscopy, the chemical structure by FTIR spectroscopy, the degradation behavior was examined in simulated body fluid, the injectability test was performed using an automatic syringe pump, the mechanical properties using a nanoindentation technique, the surface wettability was examined by an optical tensiometer, and the cell viability was assayed by MTT and LDH. In all cases, a composite paste was successfully obtained. Injectability varied between 8 and 15 min. The type of transglutaminase did not significantly affect the surface topography or chemical composition. All samples demonstrated proper nanomechanical properties with Young’s modulus and the hardness close to the values of natural bone. BDF demonstrated better hydrophilic properties and structural stability over 7 days in comparison with SNF. In all cases, the transglutaminase did not lead to cell necrosis, but cellular proliferation was significantly inhibited, especially for the BDF agent

    Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain

    No full text
    The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis

    Protective effects of voltage-gated calcium channel antagonists against zinc toxicity in SN56 neuroblastoma cholinergic cells

    No full text
    One of the pathological site effects in excitotoxic activation is Zn2+ overload to postsynaptic neurons. Such an effect is considered to be equivalent to the glutamate component of excitotoxicity. Excessive uptake of Zn2+ by active voltage-dependent transport systems in these neurons may lead to significant neurotoxicity. The aim of this study was to investigate whether and which antagonists of the voltage gated calcium channels (VGCC) might modify this Zn2+-induced neurotoxicity in neuronal cells. Our data demonstrates that depolarized SN56 neuronal cells may take up large amounts of Zn2+ and store these in cytoplasmic and mitochondrial sub-fractions. The mitochondrial Zn2+ excess suppressed pyruvate uptake and oxidation. Such suppression was caused by inhibition of pyruvate dehydrogenase complex, aconitase and NADP-isocitrate dehydrogenase activities, resulting in the yielding of acetyl-CoA and ATP shortages. Moreover, incoming Zn2+ increased both oxidized glutathione and malondialdehyde levels, known parameters of oxidative stress. In depolarized SN56 cells, nifedipine treatment (L-type VGCC antagonist) reduced Zn2+ uptake and oxidative stress. The treatment applied prevented the activities of PDHC, aconitase and NADP-IDH enzymes, and also yielded the maintenance of acetyl-CoA and ATP levels. Apart from suppression of oxidative stress, N- and P/Q-type VGCCs presented a similar, but weaker protective influence. In conclusion, our data shows that in the course of excitotoxity, impairment to calcium homeostasis is tightly linked with an excessive neuronal Zn2+ uptake. Hence, the VGCCs types L, N and P/Q share responsibility for neuronal Zn2+ overload followed by significant energy-dependent neurotoxicity. Moreover, Zn2+ affects the target tricarboxylic acid cycle enzymes, yields acetyl-CoA and energy deficits as well

    The characterization of collagen-based scaffolds modified with phenolic acids for tissue engineering application

    No full text
    Abstract The aim of the experiment was to study the morphology of collagen-based scaffolds modified by caffeic acid, ferulic acid, and gallic acid, their swelling, and degradation rate, as well as the biological properties of scaffolds, such as antioxidant activity, hemo- and cytocompatibility, histological observation, and antibacterial properties. Scaffolds based on collagen with phenolic acid showed higher swelling rate and enzymatic stability compared to scaffolds based on pure collagen, and the radical scavenging activity was in the range 85–91%. All scaffolds were non-hemolytic and compatible with surrounding tissues. Collagen modified by ferulic acid showed potentially negative effects on hFOB cells as a significantly increased LDH release was found, but all of the studied materials had antimicrobial activity against Staphylococcus aureus and Escherichia coli. It may be assumed that phenolic acids, such as caffeic, ferulic, and gallic acid, are modifiers and provide novel biological properties of collagen-based scaffolds. This paper provides the summarization and comparison of the biological properties of scaffolds based on collagen modified with three different phenolic acids

    Evaluating Gelatin-Based Films with Graphene Nanoparticles for Wound Healing Applications

    No full text
    In this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained in different conditions. Their morphology was observed using SEM with STEM mode; porosity, Raman spectra and elemental analysis were checked; and biological properties, such as hemolysis and cytotoxicity, were evaluated. Then, the selected biocompatible nanoparticles were used as the gelatin film modification with 10% concentration. As a result of solvent evaporation, homogeneous thin films were obtained. The surface’s properties, mechanical strength, antioxidant activity, and water vapor permeation rate were examined to select the appropriate film for biomedical applications. We found that the addition of graphene nanoplatelets had a significant effect on the properties of materials, improving surface roughness, surface free energy, antioxidant activity, tensile strength, and Young’s modulus. For the most favorable candidate for wound dressing applications, we chose a gelatin film containing nanoparticles with a surface area of 500 m2/g
    corecore